MAP Inference in Chains using Column Generation
نویسندگان
چکیده
Linear chains and trees are basic building blocks in many applications of graphical models, and they admit simple exact maximum a-posteriori (MAP) inference algorithms based on message passing. However, in many cases this computation is prohibitively expensive, due to quadratic dependence on variables’ domain sizes. The standard algorithms are inefficient because they compute scores for hypotheses for which there is strong negative local evidence. For this reason there has been significant previous interest in beam search and its variants; however, these methods provide only approximate results. This paper presents new exact inference algorithms based on the combination of column generation and pre-computed bounds on terms of the model’s scoring function. While we do not improve worst-case performance, our method substantially speeds real-world, typical-case inference in chains and trees. Experiments show our method to be twice as fast as exact Viterbi for Wall Street Journal part-of-speech tagging and over thirteen times faster for a joint part-of-speed and named-entity-recognition task. Our algorithm is also extendable to new techniques for approximate inference, to faster 0/1 loss oracles, and new opportunities for connections between inference and learning. We encourage further exploration of high-level reasoning about the optimization problem implicit in dynamic programs.
منابع مشابه
A Delayed Column Generation Strategy for Exact k-Bounded MAP Inference in Markov Logic Networks
The paper introduces k-bounded MAP inference, a parameterization of MAP inference in Markov logic networks. k-Bounded MAP states are MAP states with at most k active ground atoms of hidden (non-evidence) predicates. We present a novel delayed column generation algorithm and provide empirical evidence that the algorithm efficiently computes k-bounded MAP states for meaningful real-world graph ma...
متن کاملSpeeding up MAP with Column Generation and Block Regularization
In this paper, we show how the connections between max-product message passing and linear programming relaxations for MAP allow for a more efficient exact algorithm than standard dynamic programming. Our proposed algorithm uses column generation to pass messages only on a small subset of the possible assignments to each variable, while guaranteeing to find the exact solution. This algorithm is ...
متن کاملLearning to speed up MAP decoding with column generation
In this paper, we show how the connections between max-product message passing for max-product and linear programming relaxations allow for a more efficient exact algorithm for the MAP problem. Our proposed algorithm uses column generation to pass messages only on a small subset of the possible assignments to each variable, while guaranteeing to find the exact solution. This algorithm is three ...
متن کاملAdaptive Neuro-fuzzy Inference System Prediction of Zn Metal Ions Adsorption by γ-Fe2o3/Polyrhodanine Nanocomposite in a Fixed Bed Column
This study investigates the potential of an intelligence model namely, Adaptive Neuro-Fuzzy Inference System (ANFIS) in prediction of the Zn metal ions adsorption in comparision with two well known empirical models included Thomas and Yoon methods. For this purpose, an organic-inorganic core/shell structure, γ-Fe2O3/polyrhodanine nanocomposite with γ-Fe2O3 nanoparticle as core with average diam...
متن کاملEfficient Column Generation for Cell Detection and Segmentation
We study the problem of instance segmentation in biological images with crowded and compact cells. We formulate this task as an integer program where variables correspond to cells and constraints enforce that cells do not overlap. To solve this integer program, we propose a column generation formulation where the pricing program is solved via exact optimization of very small scale integer progr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012